1.用6位数字表示日期,如980716表示的是1998年7月16日。如果用这种方法表示2009年的日期,则全年中六个数字都不相同的日期有多少天?( )
A.12 B.29 C.0 D.1
2.现有26株树苗,要分植于5片绿地上,若使每片绿地上分得的树苗数各不同,则分得树苗最多的绿地至少可以分得几株树苗?
A.8 B.7 C.6 D.5
3.从1,2,3,……,30这30个数中,取出若干个数,使其中任意两个数的积都不能被4整除。问最多可取几个数? ( )
A.14个 B.15个 C.16个 D.17个
参考答案与解析:
1.C【解析】根据题目条件,显然要知道有多少个符合要求的日期,只需实际构造即可,而在构造的过程中,显然顺序是先安排月份,再安排具体日期。假设2009年AB月CD日,满足要求,它可以简写成“09ABCD”,由于月份当中不能有0,所以不能是01—10月,而11月有两个1,也应该排除,故AB=12;此时原日期可简写成“0912CD”,由于已经出现了0、1、2,所以肯定不是01—30号,而31号里又有1了,排除,因此满足题目要求的日期为0个,故正确答案为C。
2.A【解析】由于总树苗数一定,要使分得树苗最多的绿地所分树苗最少,则5块绿地上的树苗数应尽可能接近。而5块绿地树苗的平均数为5.2,据此可构造情形3、4、5、6、8,因此答案为8。故正确答案为A。
3.C【解析】任意两个数之积不能被4整除,那么所取数中最多只能有一个偶数,且该偶数不能为4的倍数;共有15个奇数,所以最多可以取15+1=16个数。故正确答案为C。